
J .  Pluid Mech. (1972), vol. 52, part 4, pp.  713-724 

Printed in Great Britain 

713 

Nonlinear gravity waves on steady non-uniform currents 

By G. D. CRAPPER 
Department of Applied Mathematics, University of Leeds 
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The interaction of nonlinear gravity waves and steady non-uniform currents 
is studied using the averaged Lagrangian method due to Whitham (1965a,b). 
The results are compared with the essentially linear theory of Longuet-Higgins & 
Stewart (1961, 1964) for three specific problems: waves on a stream (U(x) ,  0 )  
with variations in the stream balanced by upwelling from below or inflow from 
the sides, and waves on a shear flow (0, V(z ) ) .  It appears that rates of growth of 
large waves are less than those predicted by linear theory and that the energy 
density can sometimes decrease when the wave height and steepness are still 
increasing. The final section discusses the form of the energy equation in terms of 
the Lagrangian. 

1. Introduction 
In  a series of recent papers Whitham (1965a,b, 1967) has provided a new 

technique for investigating the properties of nonlinear dispersive wave systems 
and has followed this up by applying the method to gravity surface waves in 
uniform conditions. However, the method applies equally well to slowly varying 
non-uniform conditions, but so far there have been few attempts to produce 
results from it in this area. The present author has considered capillary waves 
on a non-uniform stream (Crapper 1970) and the object of this paper is to apply 
similar ideas to gravity waves in deep water. 

The relevant earlier work on this subject is contained in papers by Longuet- 
Higgins & Stewart (1961,1964). In  these a perturbation analysis to second order 
in the gravity wave is used to find the correct amplitude variation, and this is 
expressed in a modified energy equation which includes a ‘radiation-stress ’ 
term expressing the interaction between the waves and the current. We shall 
see here that by using Whitham’s theory their result comes out directly from a 
knowledge of linear gravity-wave theory and we shall go on to consider the fully 
nonlinear case. We shall also consider the form of the energy equation in terms 
of Whitham’s averaged Lagrangian density. 

The results given here are computed from a nonlinear ordinary differential 
equation and are presented in a series of figures. The differences from the previous 
linear solution are discussed in 5 4. The most surprising feature is the behaviour 
of the energy density function, which in certain cases actually starts to decrease 
when the waves are still increasing in height and steepness. This would appear to 
be a result of the fact that, as Whitham shows, changes in energy propagate at  
a different speed from changes in wavelength in a nonlinear system, although in 
a linear system both these speeds reduce to the group velocity. 
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2. The linear solution 
Whitham’s averaged Lagrangian density 3’ can be expressed as the difference 

between the mean kinetic and potential energies, Y- V, and for ordinary linear 
gravity waves in deep water with no basic flow 

9 = *pgd(w2/gk  - 1). (1) 

Here 2a = H is the height between trough and crest, w the frequency and k the 
wavenumber. We wish to apply the method to waves on a running stream. 
Lighthill (1967) has shown that for steady waves on a running stream with 
horizontal components (U(x), 0) all that is necessary is to replace w in (1) by 
- U k .  The logical move, therefore, for unsteady waves travelling in the x direc- 
tion on the same stream is to replace w by w - Uk, giving 

3’ = $pgu2[(w - Uk)2/gk - 11. 
Whitham’s equation is 

for the unsteady problem, but in the problem we wish to consider a/at = 0. The 
dynamical problem is unsteady, with the waves and moving across the stream, 
but the averaged system is steady, w and k being functions of x only. Thus 

a Y / a k  = constant, 
or, using ( 2 ) ,  

We also have the equation 
w = k(c+ U )  = constant, 

where c is the phase velocity of the gravity waves of wavelength h = 2n/k when 
there is no stream present. Equation ( 6 )  says that the actual speed of the waves 
in space is c + U ;  the fact that w = constant is essentially an expression of the 
conservation of waves, for which Whitham’s equation is 

ak aw -+- = 0, 
at ax (7) 

and here &%/at = 0. Thus (5) becomes 

a2c(c + 2 U )  = constant, (8) 

which is the result of Longuet-Higgins &, Stewart for the case where the con- 
tinuity of the main stream is maintained by fluid upwelling from below. Their 
result for the case of a laterally converging current with no upwelling is slightly 
more complicated and we shall consider only the nonlinear version in the next 
see tion. 
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3. Nonlinear solutions 
The fist problem in applying Whitham's method is the choice of a suitable 

Lagrangian 9, which, since exact uniform wave train solutions are not known, 
must be some approximation. Lighthill (1967) has produced an approximate 
Lagrangian based on the first two terms of the series solution, the Stokes wave 
(Stokes 1847) and another contribution from the wave of greatest height (Michell 
1893). This seems an appropriate choice for the present work and is given by 

where 

and s = H / h  is the wave steepness. We now consider a stream with horizontal 
components ( U ,  V )  and waves with wavenumber k = (1, m), and replace o in (1 1) 
by w - U1- Vm. Whitham's equation is 

with w = kc + U1+ Vm = constant (13) 

corresponding to (6). Also 
allay = amlax, 

another consequence of the conservation of waves also shown by Whitham. 
At this stage we introduce a system of non-dimensional variables k* = k/k,, 

c* = c/co, U* = U/c,, V* = V/c,, where k, and c, are the values of k and c where 
U and V vanish; we shall drop the asterisks from now on. The most convenient 
variable is the phase velocity c ,  therefore after all differentiations with respect 
to 1 and m have been carried out we substitute kc for w - Ul-  Vm and z,c2k for z, 
where z, = cgko/g. Then (12) becomes 

= 0, (15) 

where (1, m) = (k cos 8, k sin 8 )  and from the non-dimensional form of (13) 

k = l/(c + U cos 8 + V sin 8).  (16) 

We shall consider three specific problems: (i) when the stream is in the x 
direction with continuity maintained by upwelling from below; (ii) when the 
stream is mainly in the x direction but with continuity maintained entirely by 
lateral inflow from the sides; (iii) with waves crossing a shear flow (0, V(x) ) .  

In  problem (i) we have V = 0 and a/ay = 0. If we also take 8 = 0 we have the 
problem just considered in the linear case. Then (15) can be integrated to give 

T + z 0 c ( c + 2 U ) -  = constant. "I dz 
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Substituting for k from (16) gives a seventh-order polynomial for c which can be 
solved numerically and the root for which c -+ 1 as U -+ 0 chosen in agreement 
with our non-dimensionalization. However in view of problem (ii) it is more 
convenient to use (15) directly, which amounts to differentiating (17) with respect 
to x to give an equation of the form 

dc dU dc B A - + B x = O  or -=- -  
idX dU A’ 

where A and B are functions of c and U.  At U = 0, c = 1 and if zo is specified by 
a suitable choice of initial steepness so the equation can be solved numerically 
for c( U )  using standard library procedures. Then k follows from (16) and, when 
x has been calculated, s follows from (11). 

If we allow the waves to make an angle with the x axis we still have V = 0 
and a/ay = 0. Then (14) gives 

(19) m = ksin8 = constant = sin8,, 

where O0 is the angle between the wavenumber vector and the x axis where 
U = 0. Using (19) and (16) we have 

sin8 = m(c+ Ucose), (20) 

or 

Comparison with (20) shows that the sign should be chosen to be that of cos 8, 
which presents no difficulties, and thus all terms in (15) are again known as 
functions of c and U ,  leading to another equation of the same type as (18), of 
which, of course, the &st is a special case. 

For problem (ii) we have an additional term from the a/@ bracket in (15) 
because now d V / d y  + 0. We assume, however, that 8 = 0 (waves in the x direction 
only) and that only V depends on y, with 

d V/dy = - d U/dX. (22) 
This follows Longuet-Higgins & Stewart in the linear case, essentially solving 
only along the line of symmetry y = 0 and so putting V = 0, but not d V/dy = 0. 
With the extra term the polynomial solution is impossible, but the equation of 
type (18) which can be derived differs in only one term from the previous case 
and can be conveniently worked into the same program. 

0 also. We 
again have (19), which with (16) gives 

Finally, for problem (iii) we again assume a/ay = 0 and now U 

sine = mc/(l-mV), (23) 

and we obtain an equation of the form (18) forIdc/dV. 

4. Results 
The results are presented graphically. Figures 1-5 show the results of calcula- 

tions for problems (i) and (ii) by solid lines and broken lines respectively. The 
first three figures refer to the case where 8 = 0 always. By considering H/H,, 
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FIGURE 2. Wave steepness s as a function of stream velocity. Notation as in figure 1. 
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FIGURE 3. Wavelength A, wave velocity c and energy density 6' as functions of stream 
velocity for initial steepness so = 0.055. -, problem (i); - - -, problem (ii). 
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FIGURE 4. Angle 0 as a function of stream velocity for problem (i) with initial values 8, = 30°, 
45" and 60" and initial steepness so = 0.055. 

shown in figure 1, we see from the solid cuwes that the value of the initial 
steepness so = Ho/ho (the value where U = 0 )  has a noticeable effect on the growth 
of the wave height for U < 0, the smaller waves growing more rapidly than the 
medium and large waves, which are almost indistinguishable. If we consider the 
linear results of Longuet-Higgins & Stewart (1961, figure 1) we find that the 
curve is almost identical with our curve for so = 0.01 to the right of U -h 0.2, 
where HfHo = 2,  but rises more steeply to the left of this point. At U = - 0.2 the 
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FIGURE 5. Wave steepness 8 as a function of stream velocity for problem (i) with 
8, = OD, 30", 45" and 60°, and a,, = 0.055. 

wave steepness s = 0.037 (from figure 2), a point we shall return to shortly. The 
problem (ii) curve shows a much less rapidly rising curve, as does the linear 
solution, but again the nonlinearity reduces the rate of growth. In  the region 
U > 0 nonlinearity appears to have little effect in either problem, presumably 
because the waves are rapidly reduced to linear proportions. Figure 2 shows the 
corresponding curves for the wave steepness s; because of differences in the 
changes in h the curves for so = 0.055 and so = 0-1 are more easily distinguished. 
The waves break when s = 0.142 (Michell 1893), at which point all curves are 
terminated (in all the figures). Figures 4 and 5 show the effects in problem (i) of 
waves at an angle to the flow. As can be seen the effect on the steepness is 
surprisingly small. 

Perhaps more interesting is figure 3, which shows A/ho, c/co and &/go, where € 
is the energy density, for the intermediate initial steepness so = 0.055. It will 
be noted that problems (i) and (ii) produce different values of A/Ao and c/co 
when U is sufficiently negative; in the linear solution the values are the same. 
The behaviour of the energy density is surprising, especially in problem (ii), 
where it is seen to begin to decrease before the waves break, on the left of the 
figure. The function used for the energy density is given by Whitham's result 

8 = ua2/a+s (24) 

(Whitham 19653, equation (39), with the and y terms absent), with wreplaced 

d P  
by w - Ul-  Vrn. This gives 

& =  $(2Zz-P),  

where the k is a dimensional quantity. Substituting for z in terms of s gives 

d = *pg(n2sZ/k2) ( 1 - @i-282 - y7r4s4 - ;7r"."), (26) 

where the leading term is simply the linear result $pga2 with a = 2H = m / k .  
The functions 8k2&/pg from (26) and the linear form (broken line) are shown in 
figure 6, along with the function & / d c ,  

being the momentum density, which Whitham (19653, equation (40)) shows to 
have components ( I  a22?/ao, rn a 9 l a w ) .  In  linear solutions this function is identically 
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FIGURE 6. Energy functions SkZd/pg for nonlinear (solid line) and linear (broken line) cases 
and the nonlinear function d/&c as functions of wave steepness 8. 

equal to one. Two points are noticeable. First, the linear and nonlinear energy 
functions begin to move apart near s = 0.037, the value noted earlier a t  which 
nonlinearity began to make itself felt. Second, the difference between the 
curves is such that, if k is increasing sufficiently rapidly as s increases, it is 
clearly possible for the linear 8 (and hence H )  to increase whilst the nonlinear d 
decreases, as happens in figure 3. This can be regarded as an example of the 
'splitting' of the group velocity, as noted by Whitham, so that changes in energy 
and changes in wavenumber propagate at different speeds. It could be argued 
that the reduction in € before breaking is a consequence of the approximate 
Lagrangian used, but as the Lagrangian was constructed with particular reference 
to the highest waves this does not seem very likely, and the curve for d must in 
any case be close to that shown in figure 6. The function d / A e  shows that although 
dl decreases from its linear value the effect is not quite as large as it is on the 
energy. For the same c and k, A i s  75 yo of its linear value at breaking, whereas 
d is 71 %. 

When we consider problem (iii), waves crossing a shear flow, the effect of the 
nonlinearity is in some ways less marked. Figures 7-10 show results for a single 
initial steepness, .so = 0.055, and three initial angles, 0, = 30°, 45" and 60". 
Calculations for other values of so produce curves which are too close to these 
curves to be separated on the scales possible in print, although, of course, waves 
break at different points. All waves break at the points where the curves end 
on the left (for V < 0 ) ,  but the curves end on the right (for V > 0 )  where 
0 reaches 90". The curves of H/Ho are very similar to the linear solution (Longuet- 
Higgins & Stewart 1961, figure 3) but terminate at  finite values as 0 -+ 90". 
Indeed we can see that k, e and hence x ,  s, H and € all have finite values a t  this 
point from (23), which becomes c = l/m- V, and (19), which is k = my and the 
fact that V is finite. The linear theory has a caustic for these values of x and 
infinite energy. It will be noted that for this initial steepness the waves do not 
break before this point. The waves are reflected back if V gets sufficiently large 
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FIGURE 7. Angle 8 as a function of stream velocity for problem (iii) (waves crossing a shear 
flow) with initial values 8, = 30°, 45' and 60" and initial steepness so = 0.055. 
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FIGURE 8. Wave height H as a function of stream velocity 
for the same situations as in figure 7. 

to allow 8 to reach go", and if this happens our results are not valid as the incident 
and reflected waves will interact with each other as well as with the stream. 
Also we must consider whether the assumption of slow variations which underlies 
the whole method still holds where 0 approaches 90". The rates of change of s 
are large as functions of V ,  but the wavelength is increasing and changes over 
one wavelength need not be large if V does not vary too rapidly, so the results 
may hold even in this region. Finally, we note that for V < 0 the energy density 
again begins to decrease before the waves break, whilst their height and steepness 
are still increasing. 

46 F L M  52  
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FIGURE 9. Wave steepness 8 as a function of stream velocity 
for the same situations as in figure 7. 
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FIGURE 10. Energy density 8 as a function of stream velocity 
for the same situations as in figure 7. 
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5. The energy equation 

Lagrangian function 

where i = 1 , 2 ,  U, = U ,  U, = 8, k, = 1 and k, = m, in thenotationof the previous 
sections. For unsteady flows with no main-stream flow Whitham (1965 b, equa- 
tion (39))  shows the energy equation to be 

In  this section we find the form of the energy equation in terms of the averaged 

64(w - U,ki’ ki), (28 )  

in the case where his p and y terms are absent, and where a repeated suffix 
implies summation. When there is a variable main stream ?& we have to include 
also convection terms a( U,&)/ax, and ‘ radiation-stress ’ terms AS,, aq./axi, which 
express the interaction between the stream and the waves. Phillips (1966, equa- 
tions (3.6.11) and (3.6.19), with the appropriate modifications for infinite depth) 
makes it clear that the components of Xi, are averaged momentum fluxes, which 
from Whitham’s momentum equation (19653, equation (40)) take the form 

- (k, a q a k i  - ~ 8 ~ ~ ) .  

Thus the full energy equation is 

- (kjq--648,,) a 9  3 a u. = 0, (30) axi 

where 2 is as in (28) but differentiations with respect to kj are carried out before 
w is replaced by w - q k , .  

It is now easy to esbablish the relation between this equation and Whitham’s 
original equation 

(31)  _ _ _ _ - _ _  
at a (””) aw :,(::)’ 

which we have already used in the steady case. Here 64 is as in (30) but the 
differentiation with respect to k, is carried out after replacing w by w -  l?,kj. 
It is only necessary to make the appropriate changes in d 9 / a k i  in ( 3 1 )  and to 
use the conservation of waves equations 

ak, ak, _ -  aw ak, - + - = o O ,  - -  
ax, at ax, ax, 

and. for example, 

assuming 64 does not depend explicitly on xi or t. If L? depends on some other 
function of xi, say a mean depth h,(xi), this will be taken care of by further 
equations of the form 

a9/aho = 0. (34) 
46-2 
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The result of all the algebra is that the energy equation (30) is equation (31) 
multiplied throughout by kc = o- U,ki.  It is hoped to use (30) in a subsequent 
paper, but to include dissipation terms on the right-hand side and also to make 
some allowance for wave breaking. It should then be possible to consider the 
interactions between short gravity waves and longer waves considered as the 
basic flow. This will make an interesting comparison with the work of Longuet- 
Higgins (1969) and the recent paper by Hasselmann (1971). 
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